Relations

Discrete mathematics I - exercises

1. Let

- $A=\{1,2,3,4\}, \quad$ - $B=\{5,6,7,8,9\}$,
- $R \subseteq A \times B, R=\{(1,5),(1,6),(1,7),(3,6),(3,9),(4,5),(4,7),(4,9)\}$.
a) Draw R on an arrow diagram. b) What is the domain and range of R ?
c) Restrict R to the set $\{1,2,3\}$.
d) Restrict R to the set $\{4\}$.
e) Find R^{-1}. f) Find the image $R(\{1,2\})$.
g) Find the inverse image $R^{-1}(\{5,6\})$.

2. Let A, B, R as above. Which of the following relations are extensions of R :
a) $\{(1,5),(1,6),(1,7),(2,2),(2,4),(3,6),(3,9),(4,3),(4,5),(4,7),(4,9)\}$;
b) $\{(1,5),(1,6),(1,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,9)\}$; с) $A \times B$.
d) $B \times A$?
3. Let $R \subseteq \mathbb{Z} \times \mathbb{Z}$ and $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a=2 b\}$.
a) What is the domain and range of R ?
b) Find R^{-1}.
c) $R(\{3,4, \ldots, 10\})=$?
d) Restrict R to $\{1,2, \ldots, 6\}$.
4. What is $S \circ R$ if:

- $A=\{1,2,3\}, B=\{a, b, c, d, e, f\}, C=\{2,4,6,8\}$;
- $R \subseteq A \times B, R=\{(1, a),(1, b),(2, c),(2, f),(3, d),(3, e),(3, f)\}$;
- $S \subseteq B \times C, S=\{(a, 2),(a, 4),(c, 6),(c, 8),(d, 2),(d, 4),(d, 6),(f, 8)\}$.

5. Calculate $S \circ R$ and $R \circ S$ if $R, S \subseteq \mathbb{R} \times \mathbb{R}$ and:
a) $x R y \Longleftrightarrow 4 x=y^{2}+6, \quad x S y \Longleftrightarrow x-1=y$;
b) $x R y \Longleftrightarrow x=2 y, \quad x S y \Longleftrightarrow y=x^{3}$;
c) $x R y \Longleftrightarrow \frac{1}{x}=y^{2}, \quad x S y \Longleftrightarrow \sqrt{x-2}=3 y$;
d) $x R y \Longleftrightarrow(x-3)^{2}=y, \quad x S y \Longleftrightarrow x=y^{2} \wedge 2 y=-x$.
6. Which of the following relations are

- reflexive, • irreflexive, • symmetric, • antisymmetric,
- strictly antisymmetric, • transitive, • dichotomous, • trichotomous:
a) $\leq_{\mathbb{R}}$;
b) $<_{\mathbb{R}}$;
c) \subseteq;
d) \subset;
e) $R \subseteq \mathbb{Z}^{+} \times \mathbb{Z}^{+}, x R y \Longleftrightarrow x \mid y$;
f) ,,have a common point" on \{planar circles\};
g) ,,x knows y " on \{people\};
h) ,,relative" on \{people\}; i) ,sibling" on \{people\};
j) $X=\{a, b, c\}, R=\{(a, b),(b, a),(b, b),(a, c)\} \subseteq X \times X ; \quad$ k) $X=\{1,2,3\}, R=X \times X$;
l) $X=\{1,2,3\}, R=\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(3,3)\} \subseteq X \times X$?

7. Find a relation on $\{1,2,3,4\}$ which is:
a) reflexive and not irreflexive;
b) neither reflexive nor irreflexive;
c) antisymmetric and not symmetric;
d) symmetric and not antisymmetric;
e) neither symmetric nor antisymmetric; f) both symmetric and antisymmetric;
g) both reflexive and trichotomous;
h) not reflexive, not transitive, not symmetric, not antisymmetric and not trichotomous.
8. Prove that $R \subseteq X \times X$ is an equivalence relation. Find the partition it determines.
a) $X=\{1,2,3,4,5\}, R=\{(1,1),(1,5),(2,2),(3,3),(3,4),(4,3),(4,4),(5,1),(5,5)\}$;
b) $X=\mathbb{Z}, a R b \Longleftrightarrow 2 \mid(a+b) ; \quad$ c) $X=\mathbb{N}, a R b \Longleftrightarrow 3 \mid\left(a^{2}-b^{2}\right)$;
d) $X=\mathbb{R}, a R b \Longleftrightarrow a-b \in \mathbb{Q}$;
e) $X=\mathbb{Z}, a R b \Longleftrightarrow 5 \mid(a-b)$;
f) $X=\mathbb{Z} \times \mathbb{Z},(a, b) R(c, d) \Longleftrightarrow a+d=b+c$.
g) $X=\mathbb{Z}^{+} \times \mathbb{Z}^{+},(a, b) R(c, d) \Longleftrightarrow a d=b c$.
9. Find the equivalence relation on $X=\{a, b, c, d, e, f\}$ which determines the following partition:
a) $\{\{a, b, f\},\{c\},\{d, e\}\}$;
b) $\{\{a\},\{b\},\{c\},\{d\},\{e, f\}\}$.
10. Is $R \subseteq X \times X$ a partial order? Is it a total order?
a) $X=\{a, b, c, d\}, R=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, b),(c, c),(d, b),(d, c),(d, d)\}$;
b) $X=\mathbb{R}, a R b \Longleftrightarrow a \leq b$;
c) $X=\mathbb{R}, a R b \Longleftrightarrow a<b$;
d) $X=\mathbb{Z}^{+}, a R b \Longleftrightarrow a \mid b$;
e) $X=2^{\mathbb{N}}, a R b \Longleftrightarrow a \subseteq b$;
f) $X=\mathbb{Z}, a R b \Longleftrightarrow|a| \leq|b|$;
g) $X=\mathbb{N} \times \mathbb{N},(a, b) R(c, d) \Longleftrightarrow a \leq c \wedge b \leq d ;$
h) $X=\mathbb{R}[x]$ (set of real polynomials), $a R b \Longleftrightarrow \operatorname{deg} a \leq \operatorname{deg} b$.
11. Calculate the domain and the range, and decide whether it is a function:
a) $\left\{(x, y) \in \mathbb{R}^{2} \mid 3<x<6 \wedge x<y<2 x\right\}$;
b) $\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y| \leq 1\}\right.$;
c) $\left\{(x, y) \in \mathbb{R}^{2} \mid y=(x-1) /\left(1-x^{2}\right)\right\}$;
d) $\left\{(x, y) \in \mathbb{R}^{2} \mid y\left(1-x^{2}\right)=x-1\right\}$;
e) $\left\{(x, y) \in \mathbb{R}^{2}| | x|=|y|\}\right.$;
f) $\left\{(x, y) \in \mathbb{R}^{2} \mid y=x-\lfloor x\rfloor\right\}$.
12. Is $f \subseteq A \times B$ a function? If so, is it:

- injective, • surjective, • bijective?
a) $A=\{1,2,3,4,5\}, B=\{10,11,12\}, f=\{(1,11),(2,11),(4,12),(5,10)\}$;
b) $A=\{1,2,3,4\}, B=\{a, b, c, d, e\}, f=\{(1, a),(2, c),(3, d),(3, e),(4, a)\}$;
c) $A=\{1,2,3,4,5\}, B=\{a, b, c, d, e\}, f=\{(1, a),(4, e),(5, d)\}$;
d) $A=\{1,2,3\}, B=\{1,3,5\}, f=\{(1,1),(2,5),(3,5)\}$.

13. Which function is

- injective, • surjective, • bijective:
a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$;
b) $f: \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}, f(x)=x^{2}$;
c) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$;
d) $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=n^{2}$;
e) $f:\{a, b, c\} \rightarrow\{a, b, c\}, f(a)=b, f(b)=a, f(c)=c$?

14. Write a program that takes two finite binary relations R and S, and calculates $R \circ S$ and $S \circ R$.
15. How many

- reflexive, • irreflexive, • symmetric, • antisymmetric
relations exist on a given n-element set?

16. Prove that the inverse of a partial order is also a partial order.
