Graph theory

Discrete mathematics I - exercises

1. Consider the following graph: $G=(V, E, \varphi), V=\{A, B, C, D\}, E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}, \varphi=$ $\left\{\left(e_{1},\{A, B\}\right),\left(e_{2},\{B, C\}\right),\left(e_{3},\{A, C\}\right),\left(e_{4},\{C, D\}\right)\right\}$.
a) Draw it. b) Determine $d(A), d(B), d(C)$ and $d(D)$.
c) Draw \bar{G}.
d) Are G and \bar{G} isomorphic?
2. Draw all
a) 3-vertex,
b) 4-vertex,
c) 5-vertex
simple graphs up to isomorphy. How many connected, and how many regular graphs are there among them?
3. How many at most 5 -vertex graphs are there which are isomorphic to their complement?
4. Is there any 9 -vertex graph (not neccessarily simple) with the following degree sequence:
a) $7,7,7,6,6,6,5,5,5$;
b) $6,6,5,4,4,3,2,2,1$?
5. Is there any simple graph with the following degree sequence:
a) $0,2,3,3,3,3,6$;
b) $1,3,3,4,5,6,6$;
c) $6,6,6,6,3,3,2,2$;
d) $3,3,3,2,2,2,1,1,1$;
e) $7,7,7,6,6,6,5,5,5$;
f) $2,2,3,5,6,6,6,8,8$;
g) $6,6,5,4,4,3,2,2,1$?
6. Prove that the number of odd-degree vertices in a finite graph is always even.
7. A group of people does several handshakes. Prove that there are two people who shook hands with the same number of people.
8. Prove that if a connected graph with at least two vertices has fewer edges than vertices, then it must have a 1-degree vertex.
9. a) Prove that if in an at most $(2 n+1)$-vertex graph, all degrees are at least n, then the graph is connected.
b) Is the statement true if the degree $n-1$ is also allowed?
10. a) Prove that for any 6 -vertex graph, either it or its complement contains K_{3}.
b) Is it true for a 5 -vertex graph?
11. Prove that a graph whose all degrees are at least 2 contains a cycle.
12. If a simple finite graph is not connected, is its complement neccessarily connected?
