Short Test topics

This list contains the topics of each Short Test, and the actual questions that were on the classes.

- You can retake ≤ 3 of these, of your choice, on the last class (14 May).
- Please send me which tests you want to retake until 13 May.
- Each retaken test will replace the original score (for better or worse).
- The retake tests will be from the same topic, but not neccessarily the same kind of question.

1. (20 Feb) Basic properties of sets; basic set operations.

Left: $A=\{a, b\}, \quad B=\{A,\{b, e, d\}, \emptyset\} \quad \longrightarrow \cup B=?, \quad\{a, b\} \in \cup B$?
Right: $A=\{x, y\}, \quad B=\{A\} \cup\{x, y\} \cup\{x,\{y\}\} \quad \longrightarrow \quad B=?, \quad\{\{x, y\}\} \subseteq B ?$
2. (27 Feb) Proving/disproving set statements; symmetric difference.

Left: Is it true for all A, B sets that $A \backslash(A \backslash B)=A \cap B$?
Right: Is it true for all A, B sets that $(B \backslash A) \cup A=A \cup B$?
3. (5 Mar) Relation basics; composition.

Left: $\quad R=\{(2,3),(2,4),(3,2),(4,1)\}, S=\{(1,2),(2,3),(3,1)\} \quad \longrightarrow \quad R \circ S=?$
Right: $R=\{(1,3),(2,1),(3,2)\}, S=\{(1,2),(1,3),(2,1),(4,3)\} \quad \longrightarrow \quad S \circ R=$?
4. (12 Mar) Properties of relations (reflexive etc.).

Left: $\quad X=\{1,2,3\}, R \subseteq X \times X, R=\{(1,1),(1,2),(2,2),(2,3),(3,2),(3,3)\}$.
Is R reflexive? Is R antisymmetric?
Right: $X=\{1,2,3,4\}, R \subseteq X \times X, R=\{(1,2),(2,1),(2,2),(2,4),(3,3),(4,2)\}$.
Is R irreflexive? Is R symmetric?
5. (19 Mar) Equivalence relations; partitions.

Left: $\quad X=\{1,2,3\}, R=\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,3)\}$.
Is R an equivalence relation?
Right: $X=\{a, b, c, d\}, R=\{(a, a),(a, c),(b, b),(c, a),(c, c),(d, d)\}$.
What is the partition for this equivalence relation?
6. (26 Mar) Partial/total orders; minimal/maximal, least/greatest elements; functions; function properties (injective etc.).
Left: $\quad f: \mathbb{R} \rightarrow[0, \infty), f(x)=|x|$.
Is f injective, surjective, bijective?
Right: $A=\{1,2,3,4\}, B=\{1,2,3\}, f \subseteq A \times B, f=\{(1,2),(2,3),(3,1),(4,2)\}$. Is f a function? If so, is it injective?
7. (9 Apr) Complex numbers: algebraic form; equation solving; converting to polar form.
Left: Convert to polar form: $z=\sqrt{3}+i$.
Right: Convert to polar form: $z=1-i$.
8. (23 Apr) Complex numbers: drawing sets; geometric transformations. Left: Draw $\{z \in \mathbb{C}||z-i| \leq 2 \wedge \operatorname{Im}(z) \geq 0\}$ on the Gaussian plane. Right: Draw $\{z \in \mathbb{C}|1 \leq|z+1| \leq 2\}$ on the Gaussian plane.
9. (30 Apr) Basic combinatorics (Combinatoris I).

Left: How many outcomes are possible when rolling a die 4 times if
a) order matters;
b) order doesn't matter?

Right: How many 4 -digit numbers can be formed from the digits
a) $1,2,3,4,5,6,7$; b) $0,1,2,3,4$; if each digit can be used only once?
10. (7 May) More advanced combinatorics (Combinatoris II, \sim first page).

Left: From 10 blue and 10 red balls (each are different), how many ways can we choose 5 balls so that at least one of them is blue?
Right: When rolling a die 5 times, how many outcomes are possible which contains one or more even numbers?

