Reasoning and justification are needed in the solutions

1. (8 points) Using the Gauss-Jordan method (=EBT-method) determine the inverse of the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 8 & 0 \\
2 & 3 & 5
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

2. (14 points) Determine the eigenvalues and eigenvectors of the following matrix. Determine the algebraic and geometric multiplicities of the eigenvalues. Discuss the digonalizability of A (determine C and $C^{-1} A C$

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

3. (12 points) Consider the following subspace W and the vector x in \mathbb{R}^{4} :

$$
W:=\operatorname{Span}((1,1,-1,0) ;(1,1,1,-1) ;(2,1,2,1)), \quad x:=(-1,1,-2,1)
$$

a) Determine an orthogonal and an orthonormal basis in W.
b) Decompose the vector x by the subspace W into parallel and orthogonal components.
4. (8 points) Consider the following $\mathbb{R} \rightarrow \mathbb{R}$ type function f :

$$
f(x):=x^{2}-12 x+11 \quad(x \in(-\infty ; 5])
$$

Prove that f is invertible, and determine the sets $D_{f^{-1}}, R_{f^{-1}}$ and the for $y \in D_{f^{-1}}$ the function value $f^{-1}(y)$.
(ATTENTION: "graphical" solution cannot be acceptable here.)
5. (8 points) Prove by definition that

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{3}-x^{2}-5 x+1}{2 x^{3}+x+4}=\frac{3}{2}
$$

