\qquad
\qquad
Group, teacher: \qquad
Points: \qquad

> Computer Science BSc Basic Mathematics TEST-2
> 18-th of November, 2022

Reasoning and justification are needed in the solutions.

1. a) (7 points) Consider the complex numbers $\quad z_{1}=8-i, \quad z_{2}=3-2 i$. Compute the value of the following expression (we ask the result in algebraic form):

$$
\left(\frac{z_{1}}{z_{2}}\right)^{2} \cdot\left(\overline{z_{1}-z_{2}}\right)
$$

b) (4 points) Solve the equation $z^{3}-3 z^{2}+4 z-2=0$ on the set of complex numbers.
2. Let $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 2 & 0 & 2\end{array}\right] \in \mathbb{R}^{2 \times 3}, \quad B=\left[\begin{array}{ccc}3 & 1 & -2 \\ 2 & 4 & 2\end{array}\right] \in \mathbb{R}^{2 \times 3}$.
(a) (6 points) $\left(A B^{T}\right)^{-1} \cdot(A-B)=$?
(b) (4 points) $\operatorname{det}\left(A^{T} B\right)=$?
3. (7 points) Using cofactors (signed subdeterminants) compute the inverse of the following matrix, and check your result by matrix multiplication. (Attention: the Gauss-Jordan elimination method is not acceptable here!)

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

4. (4 points) Determine whether the following subset is a subspace in \mathbb{R}^{4}.

$$
H:=\left\{(x, y, z, u) \in \mathbb{R}^{4} \mid x y z u \geq 0\right\}
$$

5. Consider the following subspace in \mathbb{R}^{4} :

$$
W:=\left\{(y+z+2 u, x, x-y-u, x+y-2 z+u) \in \mathbb{R}^{4} \mid x, y, z, u \in \mathbb{R}, 2 x+y=z+u\right\}
$$

(a) (8 points) Determine a basis in W. Determine the dimension of W.
(b) (2 points) Determine whether the set $G=\operatorname{Span}((0,0,0,0),(1,0,-1,3))$ is a subspace of the vector space W or not.
6. (8 points) Solve the following system of linear equations using the Gauss-Jordan method. Write the solution in scalar form and in vector form. Determine the rank of the coefficient matrix.

$$
\begin{gathered}
3 x_{1}-2 x_{2}-x_{3}+4 x_{4}+2 x_{5}=-2 \\
5 x_{1}+x_{2}-2 x_{3}+7 x_{4}+4 x_{5}=-1 \\
x_{1}+8 x_{2}-x_{3}+2 x_{4}+2 x_{5}=4 \\
\hline
\end{gathered}
$$

