\qquad
\qquad
Group, teacher: \qquad
Points: \qquad

Computer Science BSc Basic Mathematics
 TEST-1
 22-nd of October, 2021

Reasoning and justification are needed in the solutions.

1. (7 points) Find the simplest form of the following expression $(a \in \mathbb{R}, a \neq 1, a \neq-1)$:

$$
\left(\frac{a}{a+1}+\frac{a^{2}+a+1}{a^{3}-1}+\frac{2 a}{a^{2}-1}\right) \cdot\left(\frac{a}{a+1}+\frac{a^{2}+a+1}{a^{3}-1}-\frac{2 a}{a^{2}-1}\right)
$$

2. (8 points) Solve the following inequality on the set of real numbers:

$$
\sqrt{x-x^{2}}>2 x-1
$$

3. $(4+8=12$ points $)$
a) Determine the real parameter a such that the number 1 will be the root of the following polynomial. Then factor out the root factor according to 1 from it.

$$
P(x):=x^{3}+a x^{2}+x-6 \quad(x \in \mathbb{R})
$$

b) Solve the following equation on the set of real numbers:

$$
\log _{3}\left(x^{3}+4 x^{2}+x-6\right)-2 \cdot \log _{9}(x+3)=2 \cdot \log _{3}(\sqrt{3-x})
$$

4. (7 points) Solve the following inequality on the set of real numbers:

$$
(1-\cos x)^{2}-3 \sin ^{2} x \leq 0
$$

5. $(1+7+1=9$ points $)$
a) Write down the mathematical form (using quantifiers) of the following statement : For all great enough positive natural numbers n we have:

$$
\frac{3 n^{5}-2 n^{4}+n^{3}+n^{2}-n+7}{5 n^{6}+2 n^{5}-n^{4}-n^{3}+n-398}<\frac{1}{5}
$$

b) Prove - by determining a good threshold - that the above statement is true.
c) Give its negation as well.
6. (7 points) Using mathematical induction prove the following statement :

$$
\forall n \in \mathbb{N}^{+}: \quad \sum_{k=1}^{n} \frac{k+2}{k \cdot(k+1) \cdot 2^{k}}=1-\frac{1}{(n+1) \cdot 2^{n}}
$$

