Sets

1.

Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the universal set, $A = \{1, 2, 3, 4\}, B = \{0, 2, 4, 8\}$ and $C = \{1, 2, 3, 4\}, C = \{1, 3, 4\}, C = \{1,$ $\{2, 3, 5, 7\}.$

- (a) Write down the following sets explicitly, i.e. by listing all their elements:
 - \overline{C} $B \cup C$ $A \cap B$ $A \setminus C$
- (b) Consider the systems of sets $X = \{A, B, C\}$ and $Y = \{\{0, 2, 4, 6, 8\}, \{1, 3, 5, 7, 9\}\}$. Find the following sets:

$$\cap X \qquad \cup X \qquad \cup Y \qquad \cap Y$$

(c) Determine the truth value of each of the following statements:

$4 \in B$	$A \subseteq B$	$\{\emptyset\} \subseteq \cup X$	$3 \in A \cap B$
$\{1,2\} \subseteq A$	$A\in \cup Y$	$A \subseteq \cup Y$	$C \cap \emptyset = \emptyset$
$2 \subseteq A$	$\{2\} \subseteq A$	$2\in \cup X$	$\{2\} \in \cap X$

2.

Let $\mathcal{A} = \{\{a, b, c\}, \{a, d, e\}, \{a, f\}\}$. Find the sets $\cup \mathcal{A}$ and $\cap \mathcal{A}$.

3.

Consider the system of sets $X = \{\{1, 2, 3\}, \{2, 3, 4, 5\}, \{0, 2, 3, 7\}\}$. Find the following sets: $\cap X$, $X \cup \{5, 6, 7, 8\}, \quad X \cup \{\{3, 5, 7\}, \{1\}, \{2\}\}, \quad \cup (X \cup \{\{3, 5, 7\}, \{1\}, \{2\}\}), \quad \cap (X \cup \{\{3, 5, 7\}, \{1\}, \{2\}\}).$

4.

Find the sets A, B, C, given that they satisfy the following: $A \cup B \cup C = \{1, 2, 3, 4, 5, 6\}, \quad (A \cap C) \cup (B \cap C) = \emptyset, \qquad C \setminus B = \{2, 4\}$ $A \setminus B = \{1, 3, 5\},\$ and $(A \cap B) \setminus C = \{6\}.$

5.

Prove that the following equalities are true for any universal set U and sets $A, B, C \subseteq U$ (hence these equalities are identities):

- (a) $A \cup B = B \cup A$ (h) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (b) $(A \cup B) \cup C = A \cup (B \cup C)$
- (c) $A \cap B = B \cap A$
- (d) $(A \cap B) \cap C = A \cap (B \cap C)$
- (e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (f) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- (g) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- (i) $A \cup \overline{A} = U$
- (i) $A \cap \overline{A} = \emptyset$
- (k) $\overline{\overline{A}} = A$

6.

Give an example for sets A, B, C that satisfy all the conditions below:

$$A \cap B \neq \emptyset, \quad A \cap C = \emptyset, \quad (A \cap B) \setminus C = \emptyset.$$

7.

Prove that for any nonempty sets A and B the following equalities hold: (a) $(A \setminus B) \cap B = \emptyset$ (b) $(A \cup \overline{B}) \cap (\overline{A} \cup \overline{B}) = \overline{B}$

8.

Let $A = \{a, b, c, d\}$, $B = \{c, d\}$ and $C = \{a, c, e\}$. Show that then $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$. Is this statement true for all sets A, B, C?

9.

Show that the following statements are true for all sets A, B, C:

(a) if $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$ (b) if $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$

(c) $A \cup (B \cap A) = A$

10.

Write the following expression in its simplest possible form: $(A \cup (A \cap B) \cup (A \cap B \cap C)) \cap (A \cup B \cup C)$.

11.

Prove that the following equalities hold for any universal set U and any sets $A, B, C \subseteq U$ (hence these equalities are identities).

(a) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$ (b) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ (c) $A \setminus (A \setminus (B \setminus C)) = A \cap B \cap \overline{C}$

12.

Prove the following identity: $\overline{(\overline{A \cap B} \cup C) \cap \overline{A}} \cup \overline{B} \cup \overline{C} = A \cup \overline{B} \cup \overline{C}$.

13.

Decide which of the following statements are true for all sets A, B, C. Prove your statements.

(a) $\overline{A} \cap B = B \setminus A$ (b) $(A \cap B) \setminus C = (A \setminus B) \cap C$ (c) $(A \cup B) \cap (B \setminus A) = (A \cup B) \setminus (A \setminus B)$ (d) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$ (e) $(A \cup B) \setminus A = B$ (f) $(A \cup B) \setminus C = A \cup (B \setminus C)$

14.

Prove the following identities.

(a) $A \bigtriangleup \emptyset = A$

(b) $A \bigtriangleup A = \emptyset$

- * (c). $A \bigtriangleup (B \bigtriangleup C) = (A \bigtriangleup B) \bigtriangleup C$
- * (d). $A \bigtriangleup (A \bigtriangleup B) = B$

15.

Prove that for any sets A and B we have $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$, where $\mathcal{P}(A)$ denotes the power set of A. What can we say about the truth value of the statement obtained by replacing \cap by \cup ?

16.

Let A, B, C, D be nonempty sets. Prove that then $A \times B \subseteq C \times D$ holds if and only if $A \subseteq C$ and $B \subseteq D$.

17.

Let $A = \{1, 2\}, B = \{a, b, c\}$ and $C = \{2, 3, 4\}$. Find the following sets: $A \times A, \quad A \times B, \quad A \times A \times B, \quad B \times A, \quad (A \times A) \times B, \quad A \times (A \times B), \quad A \triangle B, \quad A \triangle C.$

18.

Prove that for any nonempty sets A, B, C the following is true: $(A \cup B) \times C = (A \times C) \cup (B \times C).$