Sets

1.

Let $U=\{0,1,2,3,4,5,6,7,8,9\}$ be the universal set, $A=\{1,2,3,4\}, B=\{0,2,4,8\}$ and $C=$ $\{2,3,5,7\}$.
(a) Write down the following sets explicitly, i.e. by listing all their elements:
$A \cap B$
$B \cup C$
$A \backslash C$
\bar{C}
(b) Consider the systems of sets $X=\{A, B, C\}$ and $Y=\{\{0,2,4,6,8\},\{1,3,5,7,9\}\}$.

Find the following sets:
$\cap X$
$\cup X$
$\cup Y$
$\cap Y$
(c) Determine the truth value of each of the following statements:
$4 \in B$
$A \subseteq B$
$\{\emptyset\} \subseteq \cup X$
$3 \in A \cap B$
$\{1,2\} \subseteq A$
$A \in \cup Y$
$A \subseteq \cup Y$
$C \cap \emptyset=\emptyset$
$2 \subseteq A$
$\{2\} \subseteq A$
$2 \in \cup X$
$\{2\} \in \cap X$
2.

Let $\mathcal{A}=\{\{a, b, c\},\{a, d, e\},\{a, f\}\}$. Find the sets $\cup \mathcal{A}$ and $\cap \mathcal{A}$.
3.

Consider the system of sets $X=\{\{1,2,3\},\{2,3,4,5\},\{0,2,3,7\}\}$. Find the following sets: $\cap X$, $X \cup\{5,6,7,8\}, \quad X \cup\{\{3,5,7\},\{1\},\{2\}\}, \quad \cup(X \cup\{\{3,5,7\},\{1\},\{2\}\}), \quad \cap(X \cup\{\{3,5,7\},\{1\},\{2\}\})$.
4.

Find the sets A, B, C, given that they satisfy the following:
$A \backslash B=\{1,3,5\}, \quad A \cup B \cup C=\{1,2,3,4,5,6\}, \quad(A \cap C) \cup(B \cap C)=\emptyset, \quad C \backslash B=\{2,4\}$ and $(A \cap B) \backslash C=\{6\}$.
5.

Prove that the following equalities are true for any universal set U and sets $A, B, C \subseteq U$ (hence these equalities are identities):
(a) $A \cup B=B \cup A$
(g) $\overline{A \cup B}=\bar{A} \cap \bar{B}$
(b) $(A \cup B) \cup C=A \cup(B \cup C)$
(h) $\overline{A \cap B}=\bar{A} \cup \bar{B}$
(c) $A \cap B=B \cap A$
(i) $A \cup \bar{A}=U$
(d) $(A \cap B) \cap C=A \cap(B \cap C)$
(j) $A \cap \bar{A}=\emptyset$
(e) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(k) $\overline{\bar{A}}=A$
(f) $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

6.

Give an example for sets A, B, C that satisfy all the conditions below:

$$
A \cap B \neq \emptyset, \quad A \cap C=\emptyset, \quad(A \cap B) \backslash C=\emptyset .
$$

7.

Prove that for any nonempty sets A and B the following equalities hold:
(a) $(A \backslash B) \cap B=\emptyset$
(b) $(A \cup \bar{B}) \cap(\bar{A} \cup \bar{B})=\bar{B}$
8.

Let $A=\{a, b, c, d\}, B=\{c, d\}$ and $C=\{a, c, e\}$. Show that then $A \backslash(B \backslash C)=(A \backslash B) \cup(A \cap C)$. Is this statement true for all sets A, B, C ?

9.

Show that the following statements are true for all sets A, B, C :
(a) if $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$
(b) if $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$
(c) $A \cup(B \cap A)=A$
10.

Write the following expression in its simplest possible form: $(A \cup(A \cap B) \cup(A \cap B \cap C)) \cap(A \cup B \cup C)$.
11.

Prove that the following equalities hold for any universal set U and any sets $A, B, C \subseteq U$ (hence these equalities are identities).
(a) $(A \cap B) \backslash C=(A \backslash C) \cap(B \backslash C)$
(b) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
(c) $A \backslash(A \backslash(B \backslash C))=A \cap B \cap \bar{C}$
12.

Prove the following identity: $\overline{(\overline{A \cap B} \cup C) \cap \bar{A}} \cup \bar{B} \cup \bar{C}=A \cup \bar{B} \cup \bar{C}$.

13.

Decide which of the following statements are true for all sets A, B, C. Prove your statements.
(a) $\bar{A} \cap B=B \backslash A$
(b) $(A \cap B) \backslash C=(A \backslash B) \cap C$
(c) $(A \cup B) \cap(B \backslash A)=(A \cup B) \backslash(A \backslash B)$
(d) $(A \cap B) \backslash C=(A \backslash C) \cap(B \backslash C)$
(e) $(A \cup B) \backslash A=B$
(f) $(A \cup B) \backslash C=A \cup(B \backslash C)$
14.

Prove the following identities.
(a) $A \triangle \emptyset=A$
(b) $A \triangle A=\emptyset$

* (c). $A \triangle(B \triangle C)=(A \triangle B) \triangle C$
* (d). $A \triangle(A \triangle B)=B$

15.

Prove that for any sets A and B we have $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$, where $\mathcal{P}(A)$ denotes the power set of A. What can we say about the truth value of the statement obtained by replacing \cap by \cup ?
16.

Let A, B, C, D be nonempty sets. Prove that then $A \times B \subseteq C \times D$ holds if and only if $A \subseteq C$ and $B \subseteq D$.
17.

Let $A=\{1,2\}, B=\{a, b, c\}$ and $C=\{2,3,4\}$. Find the following sets:
$A \times A, \quad A \times B, \quad A \times A \times B, \quad B \times A, \quad(A \times A) \times B, \quad A \times(A \times B), \quad A \triangle B, \quad A \triangle C$.
18.

Prove that for any nonempty sets A, B, C the following is true:
$(A \cup B) \times C=(A \times C) \cup(B \times C)$.

