Short test questions

Discrete Mathematics 1.

Practice teacher: Uray M. János

1 Sets

1.1. Define the axiom of extensionality.
1.2. Define subset and proper subset, and write their notation.
1.3. Define the empty set, and write its notation.
1.4. Define the union of two sets, and write its notation.
1.5. Define the union of a system of sets, and write its notation.
1.6. Write down the commutativity, associativity and idempotence rule of set union.
1.7. Define the intersection of two sets and a systems of sets, and write their notation.
1.8. Define disjoincy and pairwise disjoincy.
1.9. Write down the commutativity, associativity and idempotence rule of set intersection.
1.10. Write down the distributivity rules of union and intersection.
1.11. Define the difference, symmetric difference and complement of sets.
1.12. Write down the de Morgan's laws of two sets.
1.13. Define the power set, and write its notation.

2 Relations

2.1. Define the ordered pair and its coordinates.
2.2. Define the Cartesian product of two sets.
2.3. Define binary relations and write the notation.
2.4. Define the domain and the range of binary relations, and write their notations.
2.5. What does it mean that one binary relation is the restriction/extension of an other? Define the restriction of a binary relation to a set, and write its notation.
2.6. Define the inverse of a binary relation.
2.7. Define the image and inverse image of a set under a binary relation, and write its notation.
2.8. Define the composition of binary relations.
2.9. Write down two properties of the composition of binary relations.
2.10. What does it mean that a relation is reflexive, irreflexive, symmetric, anti-symmetric, strictly antisymmetric, transitive, dichotomous or trichotomous? Which of them depend only on the relation itself?
2.11. Define the equivalence relation and the equivalence classes.
2.12. Define partitions of a set.
2.13. What is the connection between equivalence relations and partitions?
2.14. Define partial order and total order.
2.15. Show an example for a partial order which is not a total order.
2.16. Define strict partial order and strict order.
2.17. Define the least and the greatest element.
2.18. Define the minimal and the maximal element.
2.19. Show an example for a partial ordered set which has more maximal elements.
2.20. Show an example for a partial ordered set which has no maximal elements.

3 Functions

3.1. Define the function and write its notations.
3.2. What is the difference between $f \in X \rightarrow Y$ and $f: X \rightarrow Y$?
3.3. What does it mean that a function is injective, surjective or bijective?
3.4. Write down three properties of the composition of functions.
3.5. Define the binary and the unary operation.
3.6. Write an example of a binary and a unary operation with table.
3.7. What does it mean that an operation is commutative, associative?
3.8. Define the operation-preserving function.

4 Complex numbers

4.1. Define the set of complex numbers with the addition and multiplication.
4.2. Define the imaginary unit.
4.3. Define the real part and the imaginary part of a complex number.
4.4. Write down the fundamental theorem of algebra.
4.5. Define the conjugate and the absolute value of complex numbers.
4.6. Write down the properties of complex conjugation related to addition and multiplication.
4.7. Write down the properties of absolute value related to addition and multiplication.
4.8. Define the polar form and the argument of complex numbers.
4.9. Write down the multiplication and division rule in polar form (i.e. the De Moivre's formulas).
4.10. Write down the n 'th power of a complex number in polar form (De Moivre's formula).
4.11. Write down the formula for the n 'th root of a complex number in polar form.
4.12. Define the complex n 'th root of unity.
4.13. Write down the formula of the complex n 'th roots of unity.
4.14. Define the primitive n 'th root of unity.
4.15. If $n \in \mathbb{N}^{+}$and $w \in \mathbb{C}$, write down the complex solutions of $z^{n}=w$, using the complex n 'th roots of unity.

5 Combinatorics

5.1. Define the permutations of a finite set (without repetition). How many are there?
5.2. Define permutations with repetition. How many are there for a finite set?
5.3. Define the variations of a finite set (without repetition). How many are there?
5.4. Define variations with repetition. How many are there for a finite set?
5.5. Define the combinations of a finite set (without repetition). How many are there?
5.6. Define combinations with repetition. How many are there for a finite set?
5.7. What is a binomial coefficient, and what is the formula for calculating it?
5.8. Write down the binomial theorem.
5.9. Write down the polynomial theorem.
5.10. Write down the pigeonhole principle.
5.11. Write down the inclusion-exclusion principle.

6 Graph theory

6.1. Define an (undirected) graph.
6.2. Define simple graphs.
6.3. Define adjacent edges and vertices.
6.4. Define the degree of a vertex.
6.5. Define an isolated vertex.
6.6. Define a regular graph.
6.7. Write down the connection between the degrees and the number of edges.
6.8. What does it mean that two graphs are isomorphic?
6.9. Define subgraphs and supergraphs.
6.10. Define the complete graph.
6.11. Define the complement of a graph.
6.12. Define bipartite graphs.
6.13. Define cycle graphs, path graphs and star graphs.
6.14. Define walks, trails and paths.
6.15. Define cycles.
6.16. What does it mean that a graph is connected?
6.17. Define a tree.
6.18. Write down two different characterisations of a tree (different from the definition).

