
DOI: 10.15476/ELTE.2021.151

Eötvös Loránd University

Faculty of Informatics

Department of Computer Algebra

Algorithms and
computations related to

algebraic numbers
Theses of the PhD dissertation

Uray Marcell János

Supervisor:

Burcsi Péter
(associate professor)

Doctoral school: Doctoral School of Informatics

Head of doctoral school: Dr. Csuhaj Varjú Erzsébet
(professor)

Doctoral program: Numeric and Symbolic Computations

Head of program: Dr. Weisz Ferenc (professor)

Budapest, 2021

The dissertation is about algorithms of algebraic numbers and related theoretical

questions. An algebraic number is a number that is a root of an integer polynomial, e.g.
√

2 is the root of x2 − 2.

An important aspect of the discussed algorithms is that they calculate exactly, not

numerically (i.e. with approximations). So
√

2 is never 1.4142, but always exactly

the
√

2 mathematical object. In this way we avoid the usual problem of numerical

calculations, the rounding errors, but we face other kind of problems instead: the

exact algorithms are usually slower than the numerical ones, and they often suffer from

coefficient explosion, which means that the integers needed for the exact representation

grow too fast, often exponentially fast during the algorithm, which affects the running

time seriously. Avoiding this problem and maintaining the running time (i.e. ensuring

polynomial time) is an important aspect of exact algorithms.

1. Thesis: Operations in algebraic number fields. We analyse the computational

costs of many operations in algebraic number fields using exact arithmetic: we calculate

how much the representing coefficients can grow during the operations, and give bounds

on their running time.

Exact algorithms with algebraic numbers are important, and they are described in

many papers and books (e.g. [6, 7]). However, the computational costs of these algorithms

are often not obvious to calculate, because the bit complexity depends on how much the

representing multi-precision integers grow during the computation. There are some earlier

results on this topic, e.g. [8], but they are not general enough. We use some results from

these, but otherwise, up to our knowledge, such general results that are presented in

the dissertation have not been calculated by others, and some special operators that we

consider have not been considered by others at all.

Algebraic numbers can be represented efficiently in algebraic number fields: fix an

algebraic number θ, and consider all numbers that can be obtained from it by the four

basic operations. They can be represented in the form a0 + a1θ+ a2θ
2 + . . .+ am−1θ

m−1,

where ai’s are rational numbers, and m is the degree of θ. In many cases we can clear off

the denominators of the rational coefficients, so we assume that they are already integers.

We introduce the notation s(α) for the maximal length of the integer coefficients of

α, i.e., using the notation above: s(α) := log maxi|ai|. Then it is easy to see that for

2

example s(α + β) ≤ max(s(α), s(β)) + log 2. It is less obvious, but we also show that

for example s(αβ) ≤ s(α) + s(β) + C, where C depends on the number field (we give it

explicitly in the dissertation). We give similar results for all four basic operations, and

also calculate a lower and upper bound for |α| in terms of s(α).

Furthermore, we examine the running time of the main operations in algebraic number

fields. To be as general as possible, we introduce the following notation: let Mul(A) be the

number of machine operations needed to multiply two integers of length at most A. For

the standard multiplication algorithm, Mul(A) = O(A2), but for the Schönhage–Strassen

fast multiplication, which is faster for large integers, Mul(A) = O(A logA log logA). We

give all our results in terms of Mul(·). It is easy to see for example that multiplying

an algebraic number α by a B-bit integer requires at most mMul(s(α), B) time. We

calculate similar formulas for the less obvious operations, including multiplication and

division of two algebraic numbers.

We go further, and examine some operations that are special to real algebraic numbers.

One of them is comparison (e.g. α < β). In most cases this is trivial to perform using

approximation, but if the two numbers are very close to each other, then even the most

precise floating-point number type of the computer may fail to notice the difference. We

examine a possible way to decide the question exactly, and we calculate its worst-case

complexity. We do the same for another operation, the integer rounding. These results

are heavily used in the next section.

2. Thesis: LLL algorithm in algebriac number fields. We apply the LLL lattice

reduction algorithm to algebraic number fields, and prove that it can be performed in

polynomial time even with exact arithmetic.

The LLL algorithm is a lattice basis reduction algorithm, which converts a basis of

a lattice to a reduced basis of the same lattice. It was developed by Lenstra, Lenstra

and Lovász in [9], and they analysed its running time if the input vectors are in Zn.

There are also many efficient generalisations for Rn using floating-point arithmetic. But

we consider another generalisation: we analyse the LLL algorithm on vectors over a real

algebraic number field using exact arithmetic.

Exact calculation in the LLL algorithm might not seem very useful, since for many

practical applications, the goal is not to get the exact result, but to find a well-reduced

3

basis or a sufficiently short vector, and the floating-point LLL versions are much faster.

However, we still think that the analysis of the exact algorithm deserves interest, first

because it is interesting from a theoretical point of view, but also there are applications

where the exact values in the reduction are needed, for example in [10].

The algorithm is structured around a main while-loop, and modifies the vectors step

by step. By looking at its structure, it is not obvious how many iterations it performs,

or even if it terminates at all. The authors of [9] proved that it always terminates, and

bounded its running time in Zn. In the dissertation, we generalise this calculation for

algebraic integers. This is not an easy task, since [9] used the property of Z that all

positive numbers are at least 1, which is not true for algebraic integers, as they can be

arbitrarily close to 0.

We analyse the LLL algorithm in algebraic number fields, and give an upper bound

on its running time. This is calculated in three steps: first we give an upper bound on

the number of iterations in the main while-loop, then we calculate bounds on the size of

the variables during the algorithm using our s(·) notation, then we calculate the running

time of one iteration of the main while-loop. We combine these three results and get the

running time of whole algorithm, which turns out to be polynomial. We use our formulas

for the costs of the operations from the previous part, and give the result generally using

the Mul(·) notation.

3. Thesis: Characterisation of expansive polynomials. We give an exact and

efficient method to decide whether a polynomial is expansive. The algorithm does not

suffer from coefficient explosion, and it is guaranteed to run in polynomial time.

We examine special algebraic numbers which are greater than 1 in absolute value, and

so are all the other roots of the defining polynomial (whose root the examined number

is). On the complex plane, this means that all roots of the polynomial are outside of the

unit circle. Such polynomials are called expansive polinomials.

The question is how we can decide whether a polynomial with integer coefficients is

expansive (without calculating its roots). There are some methods in the literature,

for example the Schur–Cohn test [11], which is the key component of the Lehmer–

Schur algorithm for complex root finding. The Schur–Cohn test generates a sequence

of polynomials of decreasing degree using a simple rule, and examines a simple condition

4

on each polynomial, namely that its constant term is greater than its leading coefficient

in absolute value. If this holds for each one, then the original polynomial is expansive.

For example, the polynomial 2x4 + x3− 14x2− 4x+ 24 generates the following sequence:

2x4 + x3 − 14x2 − 4x+ 24,

32x3 − 308x2 − 98x+ 572,

−173040x2 − 46200x+ 326160,

−23063040000x+ 76437504000,

5310788203708416000000.

We can see that the test passes, so the polynomial is expansive.

The example also shows something else: that the Schur–Cohn test suffers from

coefficient explosion. Its recursive rule allows the coefficients to double their length

in each step, which may lead to exponential coefficient growth. The algorithm is often

calculated with numerical approximations, where this is not a problem, but then the

larger numbers may not be represented precisely, and so the result is not guaranteed to

be correct.

We introduce a new exact method to decide expansivity, which avoids coefficient

explosion. The method constructs determinants from the coefficients of the polynomial

using a simple rule. For example for degree 4, if f(x) = ax4 + bx3 + cx2 + dx + e, these

determinants are the following:

∣∣∣e− a∣∣∣
∣∣∣∣∣∣e− b d− a

−a e

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
e− c d− b c− a

−b e− a d

−a e

∣∣∣∣∣∣∣∣
∣∣∣e+ a

∣∣∣
∣∣∣∣∣∣e+ b d+ a

a e

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
e+ c d+ b c+ a

b e+ a d

a e

∣∣∣∣∣∣∣∣
According to our method, the polynomial is expansive if and only if all these

determinants are positive (and also some trivial conditions hold). Continuing the earlier

example, if f(x) = 2x4 + x3 − 14x2 − 4x + 24, then these determinants are 22, 540,

19200, 26, 604 and 6960 respectively, and since they are all positive, it confirms that the

polynomial is expansive. We can see that these numbers are much smaller than those

that the Schur–Cohn test produces.

5

In the dissertation we prove the validity of our method in a general form, using the

Schur–Cohn test. We also calculate the worst-case complexity of the algorithm, proving

that it runs in polynomial time.

4. Thesis: Lower bounds on the expansivity gap. We examine how close the roots

of an expansive integer polynomial can be to the unit circle, and give lower bounds on this

distance in terms of the degree and the size of the coefficients.

The expansivity gap of an expansive polynomial is the distance between the root with

the smallest size and the unit circle. We examine how small this quantity can be if the

coefficients are integers.

Without further restrictions, this can be arbitrarily small, for example the expansivity

gap of the linear polynomial Ax−(A+1) is 1/A, whose limit is zero if A→∞. Therefore

we ask the question in this way: how small can it be if the degree is fixed and the

coefficients have a fixed bound?

We give multiple answers to the question depending on how the coefficients are

measured. We can bound the height of the polynomial, i.e. the largest absolute value

of the coefficients, or its length, i.e. the sum of the absolute value of the coefficients,

or we can restrict only one or two special coefficients like the constant term and the

leading coefficient. We consider four cases, and calculate an explicit lower bound on

the expansivity gap in each case in terms of the degree and the chosen measure of the

coefficients.

We use several tools for the calculations. One of them is Liouville’s inequality, which

helps to bound distances between algebraic numbers. Using this, we prove for example

that the expansivity gap of a polynomial of degree n and constant term a0 is at least

1/(2(n
2)|a0|n−1 + 1). Another tool is given by the determinants presented earlier, which

we use to derive more complicated lower bounds. All of these bounds have in common

that the quantity measuring the size of the coefficients (e.g. |a0| in the example above)

has the exponent n − 1. They are multiplied however by different n-dependent factors

(e.g. 2(n
2) in the example above, and this is the largest one of the four).

At the end of the dissertation we give an application of the calculated bounds: we

can use them to estimate the computational complexity of certain algorithms related to

generalised number systems.

6

5. Thesis: Barely expansive polynomials. We construct a family of expansive

integer polynomials with roots very close to the unit circle. This shows that our lower

bounds on the expansivity gap are almost sharp.

Considering the bounds mentioned above, the question naturally arises whether

they can be improved or they are sharp. Proving sharpness is achieved by presenting

polynomials whose expansivity gap has exactly the same order as these bounds.

For each degree n and each sufficiently large integer A we define a certain polynomial,

and estimate its expansivity gap. We find that it is approximately 1/2An−1, which is

similar to our bounds, except that the latters have a greater, n-dependent factor instead

of 2. Nevertheless, this shows that for fixed n, the bounds are sharp.

Our defined polynomials for the first few n are as follows:

n = 2 : (A− 1)x2 + (A− 1)x+ A,

n = 3 : −x3 + (A− 1)x2 + (A− 2)x+ A,

n = 4 : −x4 − 2x3 + (A− 2)x2 + (A− 2)x+ A,

n = 5 : −x5 − 3x4 − 5x3 + (A− 4)x2 + (A− 3)x+ A,

n = 6 : −x6 − 4x5 − 9x4 − 12x3 + (A− 9)x2 + (A− 5)x+ A,

n = 7 : −x7 − 5x6 − 14x5 − 25x4 − 30x3 + (A− 21)x2 + (A− 10)x+ A.

In the dissertation we prove that these polynomials are indeed expansive (for

sufficiently large A). For this, we use the determinants defined earlier, and also for

calculating the expansivity gap of these polynomials.

Publications

[1] Uray M.J.: Algebraic number fields and the LLL algorithm. Under review process,

manuscript: https://arxiv.org/abs/1810.01634

[2] Uray M.J.: Characterization of expansive polynomials by special determinants. Publ.

Math. Debrecen 98/3-4 (2021), pp. 379–399

[3] Uray M.J.: A family of barely expansive polynomials. Annales Univ. Sci. Budapest.,

Sect. Math., accepted

7

[4] Bóka D., Burcsi P., Uray M.J.: On the algorithmic complexity of some numeration-

related problems. Publ. Math. Debrecen 98/1-2 (2021), pp. 65–81

[5] Uray M.J.: On proving inequalities by cylindrical algebraic decomposition. Annales

Univ. Sci. Budapest., Sect. Comp. 51 (2020), pp. 231–252

References

[6] H. Cohen: A Course in Computational Algebraic Number Theory. Springer-Verlag

Berlin Heidelberg, 1996

[7] K.O. Geddes, S.R. Czapor, G. Labahn: Algorithms for Computer Algebra. Kluwer

Academic Publishers, 1992

[8] J.-F. Biasse, C. Fieker, T. Hofmann: On the computation of the HNF of a module over

the ring of integers of a number field. Journal of Symbolic Computation 80 (2017),

pp. 581–615

[9] A.K. Lenstra, H.W. Lenstra, L. Lovász: Factoring Polynomials with Rational

Coefficients. Mathematische Annalen 261 (1982), pp. 515–534

[10] A. Pethő, M.E. Pohst, Cs. Bertók: On multidimensional Diophantine approximation

of algebraic numbers. Journal of Number Theory 171 (2017), pp. 422–448

[11] A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem

Kreise. Mathematische Zeitschrift 14 (1922), pp. 110–148.

8

